Recovering a Single Community with Side Information

5 Sep 2018 Hussein Saad Aria Nosratinia

We study the effect of the quality and quantity of side information on the recovery of a hidden community of size $K=o(n)$ in a graph of size $n$. Side information for each node in the graph is modeled by a random vector with the following features: either the dimension of the vector is allowed to vary with $n$, while log-likelihood ratio (LLR) of each component with respect to the node label is fixed, or the LLR is allowed to vary and the vector dimension is fixed... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet