Recovery of Missing Samples Using Sparse Approximation via a Convex Similarity Measure

28 Jun 2017  ·  Amirhossein Javaheri, Hadi Zayyani, Farokh Marvasti ·

In this paper, we study the missing sample recovery problem using methods based on sparse approximation. In this regard, we investigate the algorithms used for solving the inverse problem associated with the restoration of missed samples of image signal... This problem is also known as inpainting in the context of image processing and for this purpose, we suggest an iterative sparse recovery algorithm based on constrained $l_1$-norm minimization with a new fidelity metric. The proposed metric called Convex SIMilarity (CSIM) index, is a simplified version of the Structural SIMilarity (SSIM) index, which is convex and error-sensitive. The optimization problem incorporating this criterion, is then solved via Alternating Direction Method of Multipliers (ADMM). Simulation results show the efficiency of the proposed method for missing sample recovery of 1D patch vectors and inpainting of 2D image signals. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here