Recurrent Aligned Network for Generalized Pedestrian Trajectory Prediction
Pedestrian trajectory prediction is a crucial component in computer vision and robotics, but remains challenging due to the domain shift problem. Previous studies have tried to tackle this problem by leveraging a portion of the trajectory data from the target domain to adapt the model. However, such domain adaptation methods are impractical in real-world scenarios, as it is infeasible to collect trajectory data from all potential target domains. In this paper, we study a task named generalized pedestrian trajectory prediction, with the aim of generalizing the model to unseen domains without accessing their trajectories. To tackle this task, we introduce a Recurrent Aligned Network~(RAN) to minimize the domain gap through domain alignment. Specifically, we devise a recurrent alignment module to effectively align the trajectory feature spaces at both time-state and time-sequence levels by the recurrent alignment strategy.Furthermore, we introduce a pre-aligned representation module to combine social interactions with the recurrent alignment strategy, which aims to consider social interactions during the alignment process instead of just target trajectories. We extensively evaluate our method and compare it with state-of-the-art methods on three widely used benchmarks. The experimental results demonstrate the superior generalization capability of our method. Our work not only fills the gap in the generalization setting for practical pedestrian trajectory prediction but also sets strong baselines in this field.
PDF Abstract