Recurrent Neural Filters: Learning Independent Bayesian Filtering Steps for Time Series Prediction

23 Jan 2019  ·  Bryan Lim, Stefan Zohren, Stephen Roberts ·

Despite the recent popularity of deep generative state space models, few comparisons have been made between network architectures and the inference steps of the Bayesian filtering framework -- with most models simultaneously approximating both state transition and update steps with a single recurrent neural network (RNN). In this paper, we introduce the Recurrent Neural Filter (RNF), a novel recurrent autoencoder architecture that learns distinct representations for each Bayesian filtering step, captured by a series of encoders and decoders. Testing this on three real-world time series datasets, we demonstrate that the decoupled representations learnt not only improve the accuracy of one-step-ahead forecasts while providing realistic uncertainty estimates, but also facilitate multistep prediction through the separation of encoder stages.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods