Recursive Neighborhood Pooling for Graph Representation Learning

1 Jan 2021  ·  Behrooz Tahmasebi, Stefanie Jegelka ·

While Graph Neural Networks (GNNs) have become increasingly popular architectures for learning with graphs, recent works have revealed important shortcomings in their expressive power. In response, several higher-order GNNs have been proposed, which substantially increase the expressive power, but at a large computational cost. Motivated by this gap, we introduce and analyze a new recursive pooling technique of local neighborhoods that allows different tradeoffs of computational cost and expressive power. First, we show that this model can count subgraphs of size $k$, and thereby overcomes a known limitation of low-order GNNs. Second, we prove that, in several cases, RNP-GNNs can greatly reduce computational complexity compared to the existing higher-order $k$-GNN and Local Relational Pooling (LRP) networks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here