Recursive Total Least-Squares Algorithm Based on Inverse Power Method and Dichotomous Coordinate-Descent Iterations

25 Aug 2014  ·  Reza Arablouei, Kutluyıl Doğançay, Stefan Werner ·

We develop a recursive total least-squares (RTLS) algorithm for errors-in-variables system identification utilizing the inverse power method and the dichotomous coordinate-descent (DCD) iterations. The proposed algorithm, called DCD-RTLS, outperforms the previously-proposed RTLS algorithms, which are based on the line-search method, with reduced computational complexity. We perform a comprehensive analysis of the DCD-RTLS algorithm and show that it is asymptotically unbiased as well as being stable in the mean. We also find a lower bound for the forgetting factor that ensures mean-square stability of the algorithm and calculate the theoretical steady-state mean-square deviation (MSD). We verify the effectiveness of the proposed algorithm and the accuracy of the predicted steady-state MSD via simulations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here