Rethinking preventing class-collapsing in metric learning with margin-based losses

Metric learning seeks perceptual embeddings where visually similar instances are close and dissimilar instances are apart, but learned representations can be sub-optimal when the distribution of intra-class samples is diverse and distinct sub-clusters are present. Although theoretically with optimal assumptions, margin-based losses such as the triplet loss and margin loss have a diverse family of solutions. We theoretically prove and empirically show that under reasonable noise assumptions, margin-based losses tend to project all samples of a class with various modes onto a single point in the embedding space, resulting in a class collapse that usually renders the space ill-sorted for classification or retrieval. To address this problem, we propose a simple modification to the embedding losses such that each sample selects its nearest same-class counterpart in a batch as the positive element in the tuple. This allows for the presence of multiple sub-clusters within each class. The adaptation can be integrated into a wide range of metric learning losses. The proposed sampling method demonstrates clear benefits on various fine-grained image retrieval datasets over a variety of existing losses; qualitative retrieval results show that samples with similar visual patterns are indeed closer in the embedding space.

PDF Abstract ICCV 2021 PDF ICCV 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here