Paper

Reference-Conditioned Super-Resolution by Neural Texture Transfer

With the recent advancement in deep learning, we have witnessed a great progress in single image super-resolution. However, due to the significant information loss of the image downscaling process, it has become extremely challenging to further advance the state-of-the-art, especially for large upscaling factors. This paper explores a new research direction in super resolution, called reference-conditioned super-resolution, in which a reference image containing desired high-resolution texture details is provided besides the low-resolution image. We focus on transferring the high-resolution texture from reference images to the super-resolution process without the constraint of content similarity between reference and target images, which is a key difference from previous example-based methods. Inspired by recent work on image stylization, we address the problem via neural texture transfer. We design an end-to-end trainable deep model which generates detail enriched results by adaptively fusing the content from the low-resolution image with the texture patterns from the reference image. We create a benchmark dataset for the general research of reference-based super-resolution, which contains reference images paired with low-resolution inputs with varying degrees of similarity. Both objective and subjective evaluations demonstrate the great potential of using reference images as well as the superiority of our results over other state-of-the-art methods.

Results in Papers With Code
(↓ scroll down to see all results)