Refining 6D Object Pose Predictions using Abstract Render-and-Compare

8 Oct 2019  ·  Arul Selvam Periyasamy, Max Schwarz, Sven Behnke ·

Robotic systems often require precise scene analysis capabilities, especially in unstructured, cluttered situations, as occurring in human-made environments. While current deep-learning based methods yield good estimates of object poses, they often struggle with large amounts of occlusion and do not take inter-object effects into account. Vision as inverse graphics is a promising concept for detailed scene analysis. A key element for this idea is a method for inferring scene parameter updates from the rasterized 2D scene. However, the rasterization process is notoriously difficult to invert, both due to the projection and occlusion process, but also due to secondary effects such as lighting or reflections. We propose to remove the latter from the process by mapping the rasterized image into an abstract feature space learned in a self-supervised way from pixel correspondences. Using only a light-weight inverse rendering module, this allows us to refine 6D object pose estimations in highly cluttered scenes by optimizing a simple pixel-wise difference in the abstract image representation. We evaluate our approach on the challenging YCB-Video dataset, where it yields large improvements and demonstrates a large basin of attraction towards the correct object poses.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here