Regeneration Learning: A Learning Paradigm for Data Generation

21 Jan 2023  ·  Xu Tan, Tao Qin, Jiang Bian, Tie-Yan Liu, Yoshua Bengio ·

Machine learning methods for conditional data generation usually build a mapping from source conditional data X to target data Y. The target Y (e.g., text, speech, music, image, video) is usually high-dimensional and complex, and contains information that does not exist in source data, which hinders effective and efficient learning on the source-target mapping. In this paper, we present a learning paradigm called regeneration learning for data generation, which first generates Y' (an abstraction/representation of Y) from X and then generates Y from Y'. During training, Y' is obtained from Y through either handcrafted rules or self-supervised learning and is used to learn X-->Y' and Y'-->Y. Regeneration learning extends the concept of representation learning to data generation tasks, and can be regarded as a counterpart of traditional representation learning, since 1) regeneration learning handles the abstraction (Y') of the target data Y for data generation while traditional representation learning handles the abstraction (X') of source data X for data understanding; 2) both the processes of Y'-->Y in regeneration learning and X-->X' in representation learning can be learned in a self-supervised way (e.g., pre-training); 3) both the mappings from X to Y' in regeneration learning and from X' to Y in representation learning are simpler than the direct mapping from X to Y. We show that regeneration learning can be a widely-used paradigm for data generation (e.g., text generation, speech recognition, speech synthesis, music composition, image generation, and video generation) and can provide valuable insights into developing data generation methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here