Regime Switching Bandits

We study a multi-armed bandit problem where the rewards exhibit regime switching. Specifically, the distributions of the random rewards generated from all arms are modulated by a common underlying state modeled as a finite-state Markov chain. The agent does not observe the underlying state and has to learn the transition matrix and the reward distributions. We propose a learning algorithm for this problem, building on spectral method-of-moments estimations for hidden Markov models, belief error control in partially observable Markov decision processes and upper-confidence-bound methods for online learning. We also establish an upper bound $O(T^{2/3}\sqrt{\log T})$ for the proposed learning algorithm where $T$ is the learning horizon. Finally, we conduct proof-of-concept experiments to illustrate the performance of the learning algorithm.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here