Region Invariant Normalizing Flows for Mobility Transfer

13 Sep 2021  ·  Vinayak Gupta, Srikanta Bedathur ·

There exists a high variability in mobility data volumes across different regions, which deteriorates the performance of spatial recommender systems that rely on region-specific data. In this paper, we propose a novel transfer learning framework called REFORMD, for continuous-time location prediction for regions with sparse checkin data. Specifically, we model user-specific checkin-sequences in a region using a marked temporal point process (MTPP) with normalizing flows to learn the inter-checkin time and geo-distributions. Later, we transfer the model parameters of spatial and temporal flows trained on a data-rich origin region for the next check-in and time prediction in a target region with scarce checkin data. We capture the evolving region-specific checkin dynamics for MTPP and spatial-temporal flows by maximizing the joint likelihood of next checkin with three channels (1) checkin-category prediction, (2) checkin-time prediction, and (3) travel distance prediction. Extensive experiments on different user mobility datasets across the U.S. and Japan show that our model significantly outperforms state-of-the-art methods for modeling continuous-time sequences. Moreover, we also show that REFORMD can be easily adapted for product recommendations i.e., sequences without any spatial component.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods