Regret Bounds for Thompson Sampling in Episodic Restless Bandit Problems

NeurIPS 2019  ·  Young Hun Jung, Ambuj Tewari ·

Restless bandit problems are instances of non-stationary multi-armed bandits. These problems have been studied well from the optimization perspective, where the goal is to efficiently find a near-optimal policy when system parameters are known. However, very few papers adopt a learning perspective, where the parameters are unknown. In this paper, we analyze the performance of Thompson sampling in episodic restless bandits with unknown parameters. We consider a general policy map to define our competitor and prove an $\tilde{\mathcal{O}}(\sqrt{T})$ Bayesian regret bound. Our competitor is flexible enough to represent various benchmarks including the best fixed action policy, the optimal policy, the Whittle index policy, or the myopic policy. We also present empirical results that support our theoretical findings.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here