Regularization on Spatio-Temporally Smoothed Feature for Action Recognition

CVPR 2020 Jinhyung Kim Seunghwan Cha Dongyoon Wee Soonmin Bae Junmo Kim

Deep neural networks for video action recognition frequently require 3D convolutional filters and often encounter overfitting due to a larger number of parameters. In this paper, we propose Random Mean Scaling (RMS), a simple and effective regularization method, to relieve the overfitting problem in 3D residual networks... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet