Regularized Training Objective for Continued Training for Domain Adaptation in Neural Machine Translation

WS 2018 Huda KhayrallahBrian ThompsonKevin DuhPhilipp Koehn

Supervised domain adaptation{---}where a large generic corpus and a smaller in-domain corpus are both available for training{---}is a challenge for neural machine translation (NMT). Standard practice is to train a generic model and use it to initialize a second model, then continue training the second model on in-domain data to produce an in-domain model... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet