Knowledge-Based Regularization in Generative Modeling

6 Feb 2019  ·  Naoya Takeishi, Yoshinobu Kawahara ·

Prior domain knowledge can greatly help to learn generative models. However, it is often too costly to hard-code prior knowledge as a specific model architecture, so we often have to use general-purpose models. In this paper, we propose a method to incorporate prior knowledge of feature relations into the learning of general-purpose generative models. To this end, we formulate a regularizer that makes the marginals of a generative model to follow prescribed relative dependence of features. It can be incorporated into off-the-shelf learning methods of many generative models, including variational autoencoders and generative adversarial networks, as its gradients can be computed using standard backpropagation techniques. We show the effectiveness of the proposed method with experiments on multiple types of datasets and generative models.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here