Accuracy-Efficiency Trade-Offs and Accountability in Distributed ML Systems

4 Jul 2020  ·  A. Feder Cooper, Karen Levy, Christopher De Sa ·

Trade-offs between accuracy and efficiency pervade law, public health, and other non-computing domains, which have developed policies to guide how to balance the two in conditions of uncertainty. While computer science also commonly studies accuracy-efficiency trade-offs, their policy implications remain poorly examined. Drawing on risk assessment practices in the US, we argue that, since examining these trade-offs has been useful for guiding governance in other domains, we need to similarly reckon with these trade-offs in governing computer systems. We focus our analysis on distributed machine learning systems. Understanding the policy implications in this area is particularly urgent because such systems, which include autonomous vehicles, tend to be high-stakes and safety-critical. We 1) describe how the trade-off takes shape for these systems, 2) highlight gaps between existing US risk assessment standards and what these systems require to be properly assessed, and 3) make specific calls to action to facilitate accountability when hypothetical risks concerning the accuracy-efficiency trade-off become realized as accidents in the real world. We close by discussing how such accountability mechanisms encourage more just, transparent governance aligned with public values.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here