Reinforcement Learning for Mean Field Game

30 May 2019  ·  Mridul Agarwal, Vaneet Aggarwal, Arnob Ghosh, Nilay Tiwari ·

Stochastic games provide a framework for interactions among multiple agents and enable a myriad of applications. In these games, agents decide on actions simultaneously, the state of every agent moves to the next state, and each agent receives a reward. However, finding an equilibrium (if exists) in this game is often difficult when the number of agents becomes large. This paper focuses on finding a mean-field equilibrium (MFE) in an action coupled stochastic game setting in an episodic framework. It is assumed that the impact of the other agents' can be assumed by the empirical distribution of the mean of the actions. All agents know the action distribution and employ lower-myopic best response dynamics to choose the optimal oblivious strategy. This paper proposes a posterior sampling based approach for reinforcement learning in the mean-field game, where each agent samples a transition probability from the previous transitions. We show that the policy and action distributions converge to the optimal oblivious strategy and the limiting distribution, respectively, which constitute an MFE.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here