ReINTEL Challenge 2020: A Multimodal Ensemble Model for Detecting Unreliable Information on Vietnamese SNS

In this paper, we present our methods for unrealiable information identification task at VLSP 2020 ReINTEL Challenge. The task is to classify a piece of information into reliable or unreliable category. We propose a novel multimodal ensemble model which combines two multimodal models to solve the task. In each multimodal model, we combined feature representations acquired from three different data types: texts, images, and metadata. Multimodal features are derived from three neural networks and fused for classification. Experimental results showed that our proposed multimodal ensemble model improved against single models in term of ROC AUC score. We obtained 0.9445 AUC score on the private test of the challenge.

PDF Abstract VLSP 2020 PDF VLSP 2020 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here