Rejection via Learning Density Ratios

29 May 2024  ·  Alexander Soen, Hisham Husain, Philip Schulz, Vu Nguyen ·

Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions. The predominant approach is to alter the supervised learning pipeline by augmenting typical loss functions, letting model rejection incur a lower loss than an incorrect prediction. Instead, we propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance. This can be formalized via the optimization of a loss's risk with a $ \phi$-divergence regularization term. Through this idealized distribution, a rejection decision can be made by utilizing the density ratio between this distribution and the data distribution. We focus on the setting where our $ \phi $-divergences are specified by the family of $ \alpha $-divergence. Our framework is tested empirically over clean and noisy datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods