Relatedly: Scaffolding Literature Reviews with Existing Related Work Sections

Scholars who want to research a scientific topic must take time to read, extract meaning, and identify connections across many papers. As scientific literature grows, this becomes increasingly challenging. Meanwhile, authors summarize prior research in papers' related work sections, though this is scoped to support a single paper. A formative study found that while reading multiple related work paragraphs helps overview a topic, it is hard to navigate overlapping and diverging references and research foci. In this work, we design a system, Relatedly, that scaffolds exploring and reading multiple related work paragraphs on a topic, with features including dynamic re-ranking and highlighting to spotlight unexplored dissimilar information, auto-generated descriptive paragraph headings, and low-lighting of redundant information. From a within-subjects user study (n=15), we found that scholars generate more coherent, insightful, and comprehensive topic outlines using Relatedly compared to a baseline paper list.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here