Relating EEG recordings to speech using envelope tracking and the speech-FFR

11 Mar 2023  ·  Mike Thornton, Danilo Mandic, Tobias Reichenbach ·

During speech perception, a listener's electroencephalogram (EEG) reflects acoustic-level processing as well as higher-level cognitive factors such as speech comprehension and attention. However, decoding speech from EEG recordings is challenging due to the low signal-to-noise ratios of EEG signals. We report on an approach developed for the ICASSP 2023 'Auditory EEG Decoding' Signal Processing Grand Challenge. A simple ensembling method is shown to considerably improve upon the baseline decoder performance. Even higher classification rates are achieved by jointly decoding the speech-evoked frequency-following response and responses to the temporal envelope of speech, as well as by fine-tuning the decoders to individual subjects. Our results could have applications in the diagnosis of hearing disorders or in cognitively steered hearing aids.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here