Relation Schema Induction using Tensor Factorization with Side Information

Given a set of documents from a specific domain (e.g., medical research journals), how do we automatically build a Knowledge Graph (KG) for that domain? Automatic identification of relations and their schemas, i.e., type signature of arguments of relations (e.g., undergo(Patient, Surgery)), is an important first step towards this goal. We refer to this problem as Relation Schema Induction (RSI). In this paper, we propose Schema Induction using Coupled Tensor Factorization (SICTF), a novel tensor factorization method for relation schema induction. SICTF factorizes Open Information Extraction (OpenIE) triples extracted from a domain corpus along with additional side information in a principled way to induce relation schemas. To the best of our knowledge, this is the first application of tensor factorization for the RSI problem. Through extensive experiments on multiple real-world datasets, we find that SICTF is not only more accurate than state-of-the-art baselines, but also significantly faster (about 14x faster).

PDF Abstract EMNLP 2016 PDF EMNLP 2016 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here