Relational Extraction on Wikipedia Tables using Convolutional and Memory Networks

11 Jul 2023  ·  Arif Shahriar, Rohan Saha, Denilson Barbosa ·

Relation extraction (RE) is the task of extracting relations between entities in text. Most RE methods extract relations from free-form running text and leave out other rich data sources, such as tables. We explore RE from the perspective of applying neural methods on tabularly organized data. We introduce a new model consisting of Convolutional Neural Network (CNN) and Bidirectional-Long Short Term Memory (BiLSTM) network to encode entities and learn dependencies among them, respectively. We evaluate our model on a large and recent dataset and compare results with previous neural methods. Experimental results show that our model consistently outperforms the previous model for the task of relation extraction on tabular data. We perform comprehensive error analyses and ablation study to show the contribution of various components of our model. Finally, we discuss the usefulness and trade-offs of our approach, and provide suggestions for fostering further research.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here