Relative Arbitrage: Sharp Time Horizons and Motion by Curvature

30 Mar 2020  ·  Martin Larsson, Johannes Ruf ·

We characterize the minimal time horizon over which any equity market with $d \geq 2$ stocks and sufficient intrinsic volatility admits relative arbitrage with respect to the market portfolio. If $d \in \{2,3\}$, the minimal time horizon can be computed explicitly, its value being zero if $d=2$ and $\sqrt{3}/(2\pi)$ if $d=3$. If $d \geq 4$, the minimal time horizon can be characterized via the arrival time function of a geometric flow of the unit simplex in $\mathbb R^d$ that we call the minimum curvature flow.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here