Relative wealth concerns with partial information and heterogeneous priors

23 Jul 2020  ·  Chao Deng, Xizhi Su, Chao Zhou ·

We establish a Nash equilibrium in a market with $ N $ agents with the performance criteria of relative wealth level when the market return is unobservable. Each investor has a random prior belief on the return rate of the risky asset. The investors can be heterogeneous in both the mean and variance of the prior. By a separation result and a martingale argument, we show that the optimal investment strategy under a stochastic return rate model can be characterized by a fully-coupled linear FBSDE. Two sets of deep neural networks are used for the numerical computation to first find each investor's estimate of the mean return rate and then solve the FBSDEs. We establish the existence and uniqueness result for the class of FBSDEs with stochastic coefficients and solve the utility game under partial information using deep neural network function approximators. We demonstrate the efficiency and accuracy by a base-case comparison with the solution from the finite difference scheme in the linear case and apply the algorithm to the general case of nonlinear hidden variable process. Simulations of investment strategies show a herd effect that investors trade more aggressively under relativeness concerns. Statistical properties of the investment strategies and the portfolio performance, including the Sharpe ratios and the Variance Risk ratios (VRRs) are examed. We observe that the agent with the most accurate prior estimate is likely to lead the herd, and the effect of competition on heterogeneous agents varies more with market characteristics compared to the homogeneous case.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here