Towards Data-Algorithm Dependent Generalization: a Case Study on Overparameterized Linear Regression

NeurIPS 2023  ·  Jing Xu, Jiaye Teng, Yang Yuan, Andrew Chi-Chih Yao ·

One of the major open problems in machine learning is to characterize generalization in the overparameterized regime, where most traditional generalization bounds become inconsistent even for overparameterized linear regression. In many scenarios, this failure can be attributed to obscuring the crucial interplay between the training algorithm and the underlying data distribution. This paper demonstrate that the generalization behavior of overparameterized model should be analyzed in a both data-relevant and algorithm-relevant manner. To make a formal characterization, We introduce a notion called data-algorithm compatibility, which considers the generalization behavior of the entire data-dependent training trajectory, instead of traditional last-iterate analysis. We validate our claim by studying the setting of solving overparameterized linear regression with gradient descent. Specifically, we perform a data-dependent trajectory analysis and derive a sufficient condition for compatibility in such a setting. Our theoretical results demonstrate that if we take early stopping iterates into consideration, generalization can hold with significantly weaker restrictions on the problem instance than the previous last-iterate analysis.

PDF Abstract NeurIPS 2023 PDF NeurIPS 2023 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here