Reliable ligand discrimination in stochastic multistep kinetic proofreading: First passage time vs. product counting strategies

7 Feb 2024  ·  Xiangting Li, Tom Chou ·

Cellular signaling, crucial for biological processes like immune response and homeostasis, relies on specificity and fidelity in signal transduction to accurately respond to stimuli amidst biological noise. Kinetic proofreading (KPR) is a key mechanism enhancing signaling specificity through time-delayed steps, although its effectiveness is debated due to intrinsic noise potentially reducing signal fidelity. In this study, we reformulate the theory of kinetic proofreading (KPR) by convolving multiple intermediate states into a single state and then define an overall "processing" time required to traverse these states. This simplification allows us to succinctly describe kinetic proofreading in terms of a single waiting time parameter, facilitating a more direct evaluation and comparison of KPR performance across different biological contexts such as DNA replication and T cell receptor (TCR) signaling. We find that loss of fidelity for longer proofreading steps relies on the specific strategy of information extraction and show that in the first-passage time (FPT) discrimination strategy, longer proofreading steps can exponentially improve the accuracy of KPR at the cost of speed. Thus, KPR can still be an effective discrimination mechanism in the high noise regime. However, in a product concentration-based discrimination strategy, longer proofreading steps do not necessarily lead to an increase in performance. However, by introducing activation thresholds on product concentrations, can we decompose the product-based strategy into a series of FPT based strategies to better resolve the subtleties of KPR-mediated product discrimination. Our findings underscore the importance of understanding KPR in the context of how information is extracted and processed in the cell.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here