Reliably Learning the ReLU in Polynomial Time

30 Nov 2016  ·  Surbhi Goel, Varun Kanade, Adam Klivans, Justin Thaler ·

We give the first dimension-efficient algorithms for learning Rectified Linear Units (ReLUs), which are functions of the form $\mathbf{x} \mapsto \max(0, \mathbf{w} \cdot \mathbf{x})$ with $\mathbf{w} \in \mathbb{S}^{n-1}$. Our algorithm works in the challenging Reliable Agnostic learning model of Kalai, Kanade, and Mansour (2009) where the learner is given access to a distribution $\cal{D}$ on labeled examples but the labeling may be arbitrary. We construct a hypothesis that simultaneously minimizes the false-positive rate and the loss on inputs given positive labels by $\cal{D}$, for any convex, bounded, and Lipschitz loss function. The algorithm runs in polynomial-time (in $n$) with respect to any distribution on $\mathbb{S}^{n-1}$ (the unit sphere in $n$ dimensions) and for any error parameter $\epsilon = \Omega(1/\log n)$ (this yields a PTAS for a question raised by F. Bach on the complexity of maximizing ReLUs). These results are in contrast to known efficient algorithms for reliably learning linear threshold functions, where $\epsilon$ must be $\Omega(1)$ and strong assumptions are required on the marginal distribution. We can compose our results to obtain the first set of efficient algorithms for learning constant-depth networks of ReLUs. Our techniques combine kernel methods and polynomial approximations with a "dual-loss" approach to convex programming. As a byproduct we obtain a number of applications including the first set of efficient algorithms for "convex piecewise-linear fitting" and the first efficient algorithms for noisy polynomial reconstruction of low-weight polynomials on the unit sphere.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here