RelWalk -- A Latent Variable Model Approach to Knowledge Graph Embedding

Knowledge Graph Embedding (KGE) is the task of jointly learning entity and relation embeddings for a given knowledge graph. Existing methods for learning KGEs can be seen as a two-stage process where (a) entities and relations in the knowledge graph are represented using some linear algebraic structures (embeddings), and (b) a scoring function is defined that evaluates the strength of a relation that holds between two entities using the corresponding relation and entity embeddings... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet