Representation Bayesian Risk Decompositions and Multi-Source Domain Adaptation

22 Apr 2020  ·  Xi Wu, Yang Guo, Jiefeng Chen, YIngyu Liang, Somesh Jha, Prasad Chalasani ·

We consider representation learning (hypothesis class $\mathcal{H} = \mathcal{F}\circ\mathcal{G}$) where training and test distributions can be different. Recent studies provide hints and failure examples for domain invariant representation learning, a common approach for this problem, but the explanations provided are somewhat different and do not provide a unified picture. In this paper, we provide new decompositions of risk which give finer-grained explanations and clarify potential generalization issues. For Single-Source Domain Adaptation, we give an exact decomposition (an equality) of the target risk, via a natural hybrid argument, as sum of three factors: (1) source risk, (2) representation conditional label divergence, and (3) representation covariate shift. We derive a similar decomposition for the Multi-Source case. These decompositions reveal factors (2) and (3) as the precise reasons for failure to generalize. For example, we demonstrate that domain adversarial neural networks (DANN) attempt to regularize for (3) but miss (2), while a recent technique Invariant Risk Minimization (IRM) attempts to account for (2) but does not consider (3). We also verify our observations experimentally.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here