Reservoir Computing Universality With Stochastic Inputs

7 Jul 2018 Lukas Gonon Juan-Pablo Ortega

The universal approximation properties with respect to $L ^p $-type criteria of three important families of reservoir computers with stochastic discrete-time semi-infinite inputs is shown. First, it is proved that linear reservoir systems with either polynomial or neural network readout maps are universal... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet