Residual Value Forecasting Using Asymmetric Cost Functions

10 Jul 2017  ·  Korbinian Dress, Stefan Lessmann, Hans-Jörg von Mettenheim ·

Leasing is a popular channel to market new cars. Pricing a leasing contract is complicated because the leasing rate embodies an expectation of the residual value of the car after contract expiration... To aid lessors in their pricing decisions, the paper develops resale price forecasting models. A peculiarity of the leasing business is that forecast errors entail different costs. Identifying effective ways to address this characteristic is the main objective of the paper. More specifically, the paper contributes to the literature through i) consolidating and integrating previous work in forecasting with asymmetric cost of error functions, ii) systematically evaluating previous approaches and comparing them to a new approach, and iii) demonstrating that forecasting with asymmetric cost of error functions enhances the quality of decision support in car leasing. For example, under the assumption that the costs of overestimating resale prices is twice that of the opposite error, incorporating corresponding cost asymmetry into forecast model development reduces decision costs by about eight percent, compared to a standard forecasting model. Higher asymmetry produces even larger improvements. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here