Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers

15 Mar 2017  ·  Jacob Steinhardt, Moses Charikar, Gregory Valiant ·

We introduce a criterion, resilience, which allows properties of a dataset (such as its mean or best low rank approximation) to be robustly computed, even in the presence of a large fraction of arbitrary additional data. Resilience is a weaker condition than most other properties considered so far in the literature, and yet enables robust estimation in a broader variety of settings. We provide new information-theoretic results on robust distribution learning, robust estimation of stochastic block models, and robust mean estimation under bounded $k$th moments. We also provide new algorithmic results on robust distribution learning, as well as robust mean estimation in $\ell_p$-norms. Among our proof techniques is a method for pruning a high-dimensional distribution with bounded $1$st moments to a stable "core" with bounded $2$nd moments, which may be of independent interest.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods