Resmax: An Alternative Soft-Greedy Operator for Reinforcement Learning

29 Sep 2021  ·  Erfan Miahi, Revan MacQueen, Alex Ayoub, Abbas Masoumzadeh, Martha White ·

Soft-greedy operators, namely $\varepsilon$-greedy and softmax, remain a common choice to induce a basic level of exploration for action-value methods in reinforcement learning. These operators, however, have a few critical limitations. In this work, we investigate a simple soft-greedy operator, which we call resmax, that takes actions proportionally to their suboptimality gap: the residual to the estimated maximal value. It is simple to use and ensures coverage of the state-space like $\varepsilon$-greedy, but focuses exploration more on potentially promising actions like softmax. Further, it does not concentrate probability as quickly as softmax, and so better avoids overemphasizing sub-optimal actions that appear high-valued during learning. Additionally, we prove it is a non-expansion for any fixed exploration hyperparameter, unlike the softmax policy which requires a state-action specific temperature to obtain a non-expansion (called mellowmax). We empirically validate that resmax is comparable to or outperforms $\varepsilon$-greedy and softmax across a variety of environments in tabular and deep RL.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods