Resolving Lexical Ambiguity in Tensor Regression Models of Meaning

This paper provides a method for improving tensor-based compositional distributional models of meaning by the addition of an explicit disambiguation step prior to composition. In contrast with previous research where this hypothesis has been successfully tested against relatively simple compositional models, in our work we use a robust model trained with linear regression. The results we get in two experiments show the superiority of the prior disambiguation method and suggest that the effectiveness of this approach is model-independent.

PDF Abstract ACL 2014 PDF ACL 2014 Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here