Rethinking 1D-CNN for Time Series Classification: A Stronger Baseline

For time series classification task using 1D-CNN, the selection of kernel size is critically important to ensure the model can capture the right scale salient signal from a long time-series. Most of the existing work on 1D-CNN treats the kernel size as a hyper-parameter and tries to find the proper kernel size through a grid search which is time-consuming and is inefficient. This paper theoretically analyses how kernel size impacts the performance of 1D-CNN. Considering the importance of kernel size, we propose a novel Omni-Scale 1D-CNN (OS-CNN) architecture to capture the proper kernel size during the model learning period. A specific design for kernel size configuration is developed which enables us to assemble very few kernel-size options to represent more receptive fields. The proposed OS-CNN method is evaluated using the UCR archive with 85 datasets. The experiment results demonstrate that our method is a stronger baseline in multiple performance indicators, including the critical difference diagram, counts of wins, and average accuracy. We also published the experimental source codes at GitHub (

Results in Papers With Code
(↓ scroll down to see all results)