Rethinking Generative Zero-Shot Learning: An Ensemble Learning Perspective for Recognising Visual Patches

27 Jul 2020  ·  Zhi Chen, Sen Wang, Jingjing Li, Zi Huang ·

Zero-shot learning (ZSL) is commonly used to address the very pervasive problem of predicting unseen classes in fine-grained image classification and other tasks. One family of solutions is to learn synthesised unseen visual samples produced by generative models from auxiliary semantic information, such as natural language descriptions. However, for most of these models, performance suffers from noise in the form of irrelevant image backgrounds. Further, most methods do not allocate a calculated weight to each semantic patch. Yet, in the real world, the discriminative power of features can be quantified and directly leveraged to improve accuracy and reduce computational complexity. To address these issues, we propose a novel framework called multi-patch generative adversarial nets (MPGAN) that synthesises local patch features and labels unseen classes with a novel weighted voting strategy. The process begins by generating discriminative visual features from noisy text descriptions for a set of predefined local patches using multiple specialist generative models. The features synthesised from each patch for unseen classes are then used to construct an ensemble of diverse supervised classifiers, each corresponding to one local patch. A voting strategy averages the probability distributions output from the classifiers and, given that some patches are more discriminative than others, a discrimination-based attention mechanism helps to weight each patch accordingly. Extensive experiments show that MPGAN has significantly greater accuracy than state-of-the-art methods.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here