Current end-to-end deep learning driving models have two problems: (1) Poor generalization ability of unobserved driving environment when diversity of train- ing driving dataset is limited (2) Lack of accident explanation ability when driving models don’t work as expected. To tackle these two problems, rooted on the be- lieve that knowledge of associated easy task is benificial for addressing difficult task, we proposed a new driving model which is composed of perception module for see and think and driving module for behave, and trained it with multi-task perception-related basic knowledge and driving knowledge stepwisely... (read more)
PDFMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |