Retinex-inspired Unrolling with Cooperative Prior Architecture Search for Low-light Image Enhancement

Low-light image enhancement plays very important roles in low-level vision field. Recent works have built a large variety of deep learning models to address this task... However, these approaches mostly rely on significant architecture engineering and suffer from high computational burden. In this paper, we propose a new method, named Retinex-inspired Unrolling with Architecture Search (RUAS), to construct lightweight yet effective enhancement network for low-light images in real-world scenario. Specifically, building upon Retinex rule, RUAS first establishes models to characterize the intrinsic underexposed structure of low-light images and unroll their optimization processes to construct our holistic propagation structure. Then by designing a cooperative reference-free learning strategy to discover low-light prior architectures from a compact search space, RUAS is able to obtain a top-performing image enhancement network, which is with fast speed and requires few computational resources. Extensive experiments verify the superiority of our RUAS framework against recently proposed state-of-the-art methods. read more

PDF Abstract CVPR 2021 PDF CVPR 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here