Revealing three-dimensional quantum criticality by Sr-substitution in Han Purple

11 Mar 2021  ·  Stephan Allenspach, Pascal Puphal, Joosep Link, Ivo Heinmaa, Ekaterina Pomjakushina, Cornelius Krellner, Jakob Lass, Gregory S. Tucker, Christof Niedermayer, Shusaku Imajo, Yoshimitsu Kohama, Koichi Kindo, Steffen Krämer, Mladen Horvatić, Marcelo Jaime, Alexander Madsen, Antonietta Mira, Nicolas Laflorencie, Frédéric Mila, Bruce Normand, Christian Rüegg, Raivo Stern, Franziska Weickert ·

Classical and quantum phase transitions (QPTs), with their accompanying concepts of criticality and universality, are a cornerstone of statistical thermodynamics. An exemplary controlled QPT is the field-induced magnetic ordering of a gapped quantum magnet. Although numerous "quasi-one-dimensional" coupled spin-chain and -ladder materials are known whose ordering transition is three-dimensional (3D), quasi-2D systems are special for several physical reasons. Motivated by the ancient pigment Han Purple (BaCuSi$_{2}$O$_{6}$), a quasi-2D material displaying anomalous critical properties, we present a complete analysis of Ba$_{0.9}$Sr$_{0.1}$CuSi$_{2}$O$_{6}$. We measure the zero-field magnetic excitations by neutron spectroscopy and deduce the magnetic Hamiltonian. We probe the field-induced transition by combining magnetization, specific-heat, torque and magnetocalorimetric measurements with low-temperature nuclear magnetic resonance studies near the QPT. By a Bayesian statistical analysis and large-scale Quantum Monte Carlo simulations, we demonstrate unambiguously that observable 3D quantum critical scaling is restored by the structural simplification arising from light Sr-substitution in Han Purple.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Strongly Correlated Electrons