Reversible GANs for Memory-efficient Image-to-Image Translation

The Pix2pix and CycleGAN losses have vastly improved the qualitative and quantitative visual quality of results in image-to-image translation tasks. We extend this framework by exploring approximately invertible architectures which are well suited to these losses... (read more)

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper