Revisiting Graph Construction for Fast Image Segmentation

18 Feb 2017  ·  Zizhao Zhang, Fuyong Xing, Hanzi Wang, Yan Yan, Ying Huang, Xiaoshuang Shi, Lin Yang ·

In this paper, we propose a simple but effective method for fast image segmentation. We re-examine the locality-preserving character of spectral clustering by constructing a graph over image regions with both global and local connections. Our novel approach to build graph connections relies on two key observations: 1) local region pairs that co-occur frequently will have a high probability to reside on a common object; 2) spatially distant regions in a common object often exhibit similar visual saliency, which implies their neighborship in a manifold. We present a novel energy function to efficiently conduct graph partitioning. Based on multiple high quality partitions, we show that the generated eigenvector histogram based representation can automatically drive effective unary potentials for a hierarchical random field model to produce multi-class segmentation. Sufficient experiments, on the BSDS500 benchmark, large-scale PASCAL VOC and COCO datasets, demonstrate the competitive segmentation accuracy and significantly improved efficiency of our proposed method compared with other state of the arts.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here