Revisiting Optimal Resilience of Fast Byzantine Consensus (Extended Version)

25 Feb 2021  ·  Petr Kuznetsov, Andrei Tonkikh, Yan X Zhang ·

It is a common belief that Byzantine fault-tolerant solutions for consensus are significantly slower than their crash fault-tolerant counterparts. Indeed, in PBFT, the most widely known Byzantine fault-tolerant consensus protocol, it takes three message delays to decide a value, in contrast with just two in Paxos. This motivates the search for fast Byzantine consensus algorithms that can produce decisions after just two message delays \emph{in the common case}, e.g., under the assumption that the current leader is correct and not suspected by correct processes. The (optimal) two-step latency comes with the cost of lower resilience: fast Byzantine consensus requires more processes to tolerate the same number of faults. In particular, $5f+1$ processes were claimed to be necessary to tolerate $f$ Byzantine failures. In this paper, we present a fast Byzantine consensus algorithm that relies on just $5f-1$ processes. Moreover, we show that $5f-1$ is the tight lower bound, correcting a mistake in the earlier work. While the difference of just $2$ processes may appear insignificant for large values of $f$, it can be crucial for systems of a smaller scale. In particular, for $f=1$, our algorithm requires only $4$ processes, which is optimal for any (not necessarily fast) partially synchronous Byzantine consensus algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Distributed, Parallel, and Cluster Computing

Datasets


  Add Datasets introduced or used in this paper