Revisiting Reweighted Wake-Sleep

Discrete latent-variable models, while applicable in a variety of settings, can often be difficult to learn. Sampling discrete latent variables can result in high-variance gradient estimators for two primary reasons: 1) branching on the samples within the model, and 2) the lack of a pathwise derivative for the samples. While current state-of-the-art methods employ control-variate schemes for the former and continuous-relaxation methods for the latter, their utility is limited by the complexities of implementing and training effective control-variate schemes and the necessity of evaluating (potentially exponentially) many branch paths in the model. Here, we revisit the Reweighted Wake Sleep (RWS; Bornschein and Bengio, 2015) algorithm, and through extensive evaluations, show that it circumvents both these issues, outperforming current state-of-the-art methods in learning discrete latent-variable models. Moreover, we observe that, unlike the Importance-weighted Autoencoder, RWS learns better models and inference networks with increasing numbers of particles, and that its benefits extend to continuous latent-variable models as well. Our results suggest that RWS is a competitive, often preferable, alternative for learning deep generative models.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here