Revisiting Reweighted Wake-Sleep

ICLR 2019 Tuan Anh LeAdam R. KosiorekN. SiddharthYee Whye TehFrank Wood

Discrete latent-variable models, while applicable in a variety of settings, can often be difficult to learn. Sampling discrete latent variables can result in high-variance gradient estimators for two primary reasons: 1) branching on the samples within the model, and 2) the lack of a pathwise derivative for the samples... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet