Revisiting the dynamics of Bose-Einstein condensates in a double well by deep learning with a hybrid network

25 Apr 2021  ·  Shurui Li, Jianqin Xu, Jing Qian, Weiping Zhang ·

Deep learning, accounting for the use of an elaborate neural network, has recently been developed as an efficient and powerful tool to solve diverse problems in physics and other sciences. In the present work, we propose a novel learning method based on a hybrid network integrating two different kinds of neural networks: Long Short-Term Memory(LSTM) and Deep Residual Network(ResNet), in order to overcome the difficulty met in numerically simulating strongly-oscillating dynamical evolutions of physical systems. By taking the dynamics of Bose-Einstein condensates in a double-well potential as an example, we show that our new method makes a high efficient pre-learning and a high-fidelity prediction about the whole dynamics. This benefits from the advantage of the combination of the LSTM and the ResNet and is impossibly achieved by a single network in the case of direct learning. Our method can be applied for simulating complex cooperative dynamics in a system with fast multiple-frequency oscillations with the aid of auxiliary spectrum analysis.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods