Revisiting the Train Loss: an Efficient Performance Estimator for Neural Architecture Search

8 Jun 2020Binxin RuClare LyleLisa SchutMark van der WilkYarin Gal

Reliable yet efficient evaluation of generalisation performance of a proposed architecture is crucial to the success of neural architecture search (NAS). Traditional approaches face a variety of limitations: training each architecture to completion is prohibitively expensive, early stopping estimates may correlate poorly with fully trained performance, and model-based estimators require large training sets... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper