An unintended consequence of feature sharing is the model fitting to correlated tasks within the dataset, termed negative transfer. In this paper, we revisit the problem of negative transfer in multitask setting and find that its corrosive effects are applicable to a wide range of linear and non-linear models, including neural networks. We first study the effects of negative transfer in a principled way and show that previously proposed counter-measures are insufficient, particularly for trainable features. We propose an adversarial training approach to mitigate the effects of negative transfer by viewing the problem in a domain adaptation setting. Finally, empirical results on attribute prediction multi-task on AWA and CUB datasets further validate the need for correcting negative sharing in an end-to-end manner.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here