Reward-Conditioned Policies

31 Dec 2019  ·  Aviral Kumar, Xue Bin Peng, Sergey Levine ·

Reinforcement learning offers the promise of automating the acquisition of complex behavioral skills. However, compared to commonly used and well-understood supervised learning methods, reinforcement learning algorithms can be brittle, difficult to use and tune, and sensitive to seemingly innocuous implementation decisions. In contrast, imitation learning utilizes standard and well-understood supervised learning methods, but requires near-optimal expert data. Can we learn effective policies via supervised learning without demonstrations? The main idea that we explore in this work is that non-expert trajectories collected from sub-optimal policies can be viewed as optimal supervision, not for maximizing the reward, but for matching the reward of the given trajectory. By then conditioning the policy on the numerical value of the reward, we can obtain a policy that generalizes to larger returns. We show how such an approach can be derived as a principled method for policy search, discuss several variants, and compare the method experimentally to a variety of current reinforcement learning methods on standard benchmarks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here