Reward Learning for Efficient Reinforcement Learning in Extractive Document Summarisation

30 Jul 2019Yang GaoChristian M. MeyerMohsen MesgarIryna Gurevych

Document summarisation can be formulated as a sequential decision-making problem, which can be solved by Reinforcement Learning (RL) algorithms. The predominant RL paradigm for summarisation learns a cross-input policy, which requires considerable time, data and parameter tuning due to the huge search spaces and the delayed rewards... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet